CHARACTERISTIC CONES OF THE EQUATIONS
IN THE NONLINEAR THEORY OF ELASTICITY

E. I. Romenskii UDC 539.3 +517.945

The roots of the equation for the characteristic normals for two systems of differential
equations in the nonlinear theory of elasticity are investigated. The first model is constructed
using a thermodynamic identity. The second is a very simple hypoelastic model (the devia-
tor of the stress-rate tensor is proportional to the deviator of the strain-rate tensor), It

is shown that the roots of the equations for the normals to the characteristics for the second
model are the same as the first~orde r terms in the expansion of the roots of the first model
with respect to the strain-tensor deviator.

In this paper we study the characteristic cones of the differential equations describing two models
in the nonlinear theory of elasticity. The first model, the differential equations of which are obtained on
the basis of a certain thermodynamic identity, was formulated by Godunov and Romenskii {1]. The other
model is widely used in calculating plastic—elastic flow [2]. The thermodynamics of this model does not
have a satis factory explanation. It can be treated as a certain approximation of the thermodynamics for
the model [1].

The system of differential equations formulated in [1] has the form

duﬂ1 83ik 0
T T,
, 1)
dgy, ds

du du ’
rra + giaﬁ + gk“&f = Qi (gmm S), T %{mns S)
where uj are the components of the velocity vector, oji is the stress tensor, gji is the Cauchy deformation
tensor, 8 is the entropy, and p =p /det ] gik“ is the density of the medium,
To close the system we give the dependence of oji on g;i and 8 by the Murnaghan equation

P 9 oE
ik = pa'_'gm 8ak

where E=E{gmp, S) is the internal energy of the medium. We shall consider an isotropic medium, assum-
ing that £ depends on the three independent invariants of the strain tensor and on the entropy. It is conve-
nientto consider the following dependences:

E =E (ky, ky, ks, 8), ks =1/ Vg
E=E(@, D, A, S

p = po/ (kikoks), D = Yy (di® + dg? + d¥),
A= 1/3 (dla + dza + dss)

3
di = In (ki /| Vi) (di + dy + dg = 0)
where ki are the compression coefficients along the principal axes of the strain tensor.
The invariants k;, ky, and k3 can be rewritten in terms of p, D, and A.

The equation, obtained by Godunov and Romenskii [1], for the characteristic normals has the form
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det (@ —A) =0

Lyny® + Mayng® + Mons® Nymme Nonimg
A= Ngnemy Mgny® 4 Long? + Myng? Nineng
Nyngmy Nyngns Mo + Mymg® + Lyng®

where M = ki, © = @ + uaks, and (w, &y, £y, £g) is the normal vector to the characteristic surface.

The nine elastic moduli —~ Lj, M;, N; —are expressed in terms of the first and second derivatives of
the equation of state E(ky, k,, ks, S) according to the equations

InBy — ksEy,

’ kE v — BBy,
ko? — ke?

kot — ka2

L1=Ek1k,1 M = N1=Ekzks‘“

and the rest of the I;, Mj, and Nj are obtained from these by the appropriate substitution of indices.

The matrix A corresponds to a crystal of the rhombic system [3], whose anisotropy is described by
the nine independent elastic moduli. In such a medium sound waves propagate in three directions, generally
speaking, with different velocities. Fedorov [3] discusses the theory of elastic waves in crystals; however,
there only small deformations are studied and the calculation of the characteristics is not carried through
to completion. In the present case knowing interpolation equations for the equation of state, we can elnci-
date the nature of sound-wave propagation. We shall determine how sound waves propagate with the accu-
racy of thefirst terms in the expansion of the elastic moduli with respect to the strain-tensor deviator in a
neighborhood of zero deviator for any density and entropy.

Using the parameterization of the equation of state E=E(p, D, A, S), we can expand the matrix A in
powers of the strain deviator dj in a neighborhood of dj=0:

A= AO(p, §) + did; @ (p, 8) + &*AP (p, S) + . ..
and study the eigenvalues of A as perturbations of the eigenvalues of A(o)_

We restrict ourselves to the first-order perturbation. In order to calculate the elastic moduli we can
use Eqs. (5.2) from [1] to write the matrices

C+mE®+mEp &2 + &% (I +m) gk, (¢
. £ g +m) Et
A® = ( (4 m)&E, C+mE® + mE + 52 + &) (+ m; E:E:
(E+m)&E, {1+ m)&&, C+m& +m 2+ 82 + &?)
. —2@m + 2k —n) & 4 (m + ¥, n) (& + &) 0 0
AV = 0 (m -3/, n) &’ m+yn + 2k)_§2§3
0 (mAYen - 2B)EE, (MY, n)E
(m %5 n) B2 0 ‘ (m+Yon + 20 EE
A= ( ; —2(2m + 2k — )8 + (m + /1) (B2 + &%) Ty
(m 4 Yyn A 2k) EE, 0 (m +3/,m) &?
(m 43/, n) &g (m 4y n 4 2k)E,E 0
AP = ((m + Yan 4+ 2k) &y (m -12— 3y 1) §3)2§L2 0
0 0 —2(2m + 2k — )&+ (n +%m) (B2 +ED)

l=(0"Eg)e—"/sEp, m=1YyEp, n=13Es k= s Eop
where all quantities are calculated at the point d;=d;=dg=0. The matrices Ai(i) admit some arbitrariness
in the way they are written, since d; +d,+d;=0; their specific form is chosen from considerations of sym-
metry.
It is necessary to explain how the eigenvalues of A () are perturbed by the perturbed matrix di Ai(i).

The eigenvalues of a multiparameter perturbation might not be differentiable with respect to the parameters
of the perturbation {4]. Therefore, we go to a one-parameter perturbation

B A = AO® g (d;e AN + O (D)
where £=vD. We denote Aﬁ1)=s'1diAi ),

The eigenvalues for a one-parameter symmetrical perturbation are real and differentiable with re-
spect to the perturbation parameter [4}. This makes it possible to determine the terms in the expansion of
the eigenvalues and eigenvectors in powers of €. Let us consider the first terms in the expansion of the
eigenvalues. '
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The matrix A(°) has one simple and one twofold eigenvalue
(@A =( + 2m) (£ + & + &), (@O = () =m (&2 + & + &)

To these eigenvalues corresponds an orthonormal system of eigenvectors, e.g.,

13} &
b= B}, G= o | =&
VEErEP T &5 £, VER L EF 0/’

1 —Eibs
Ve M e e gl;fzg&;

Denoting by 2%, Q,% $5* the eigenvalues of A and expanding them in powers of €, we can show that
(2 = (A ¢y, &)

and (922)(1) and (Q5?) @) are eigenvalues of the matrix

(Amez, es) (Au)ez, es)
((Am“-’a, €) (Amesu 33))

The matrix A(i) and the vectors e,, e,, e; are known, hence, we find

(AN e, &) = — 2(m + 2k — Ypn)(dy&s® + st + dsks®) / VD

(AW ey, e) = (*len + m)(diE,® + o8 + duls®) / VD —

— (ln = m) (&2 + &2 + BNy / VD — (fgn — m)(E® + &P + EANAiE? + dols?) /(52 + &Y D
(A® ey,e5) == (AD ey, 60) = (0 — m) ExE,85 (dy — d)VER + E2 + &2 /(B2 + EQVD
(Mg, e0) = Chan + m) (diEe® + dobs? + doke®) / VD +
+ an—m) (& + E7)dy/V D + (fin — mEHAES® + df) / (&2 + EAVD

Calculating (Qiz)(l) b}: the indicated method, we obtain -

Qi = (L + 2m)(E,® + & + &%) — 2(m + 2k — Yyn)(diE)2 4 do& + dyEs?) + O (D)
Qaf = m (&® + 8 + &%) 4 Yylm + Yon)(di8® + dofs® + dgbe?) — Yalm — ¥yn) [(dife® + b2+ dala®)® — 452 + & +
+ 8% (dodsfs® + didsls® + didof™)) + O (D) Q5* = m (82 + B + &%) + %y (m 4 Yyn)(dify® + dos? +-
+d€s®) 4 Yolm — omldi&i® + o8+ daBa)? — 4 (87 + &' +ENdudels? + didely? + didyE ] + O ()
Hence, it is seen that the perturbed eigenvalues for (2,2 ® = (2, ® differ by a magnitude
(m — 2/ [(di&1® + daf® -+ dafs®) — 4(E:2 + &5 + EPNdadsls® + didsly? + didoEDI™ + O (D)

The expression under the square root sign is always nonnegative. For example, if d;=d, and d; =d,,
then it can be rewritten in the form

l(dy — dg)&® + (dy — do)& + (dy — d)ESP + 4 (dy — dy)(dy — d) E2E* > 0
The equality with zero is achieved when d; =d;=d,.
Let us consider the interpolation equations for the equation of state E(p, D, A, S). From our calcula~

tions it follows that at the point dj=dy=ds=0

3
5o OB = L+4sm = (1 2m) — Yym = e — ¥, c1?
Yo 0E (8D = m = ¢;*

where ¢, and c; are the propagation velocities of longitudinal and transverse sound waves. In order to de-
scribe the simplest nonlinear effects of sound-wave propagation, it suffices to give the equation of state in
the form .

E (0, D, 8) = E™ (p, S) + 2m (p, S)D

We consider another model. The system of differential equations describing this model includes hypo-
elastic relations as the stress—strain coupling. These relations with the addition of dissipative terms are
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a particular case of the Reuss equations of plasticity theory [5]. The closed system of equations has the
form

de du, dE du, ,0u;
,;;=—P§x—j5i5» PE=—P6—5;-%+5¢;:%—; (2)
o B
dt ' dr,
de,,’ 1 du ou 1 du, Ou, du,  Ou 2 du
L S T - SRt ) DL P G ] ty _k__ 2 @ ;
@ 2 O (6zk ] aza) 2 %z (3’1‘ axo) +w (6xk + Oz 3 oxy 6“’36”">

Here p is the density, E is the internal energy, p is the pressure, u; are the components of the velocity,
gik' is the deviator of the stress tensor, and p is a function of p, E, and oy,

To close the system a relation p=p(p, E, ojk") is given. Let us consider the relation p = p(p, E),
which was used by Wilkins [2] in mimerical calculations. To calculate the characteristic matrix we use
the method of reducing the system of differential e quations to a system of second-order equations which
was used in [1]. This procedure consists of extending the initial system by differentiating with respect to
t and ;. In doing this the vertical characteristics (lines of ‘tlow) are isolated, and the part of the char-
acteristic matrix associated with the main terms in the velocity equations correspond to the three propa-
gation velocities of sound waves.

We apply the operator d/dt to the equations for u;:
dPu; o [dE 9 [dp a [dog’ —
o+ P gty () + o ) — 3y a0

The dots here and hence forth denote terms of the equations which are inessential for calculating the
characteristics. They contain no derivatives higher than first order. From the remaining equations we
find

i(dE\_ A N i DY 9 [do\ _ Oy

oe, \dt | = T g duge, T o Bzgm, T 0w \@t| T T Page, T

3 (d%’>_ 1 Pu P 1 (3% _ P )+ { P Py 24 5 P >+
Gz \dt | T 2R \Bzdz, Oxoz,) 2 Fe\bude, Oz,9%, ”\axkazk bz m, ~ 3 W BPggp )T

Putting the obtained expre ssions into the equations for dzui/dt2 and after grouping together the terms,
we find

diu; 1 1 %y, 1 1 &, Py, q 3, 1 o
3 ' 7 — st o o K .
P o7 — (Ppp + 5 PeP 3 M) Ty + (5 +5 PE> % Gagn, M Gmym, T 20U Gewy, T oK Fony +...=0

If we denote the elements of the characteristic matrix by Aij then the equation for the characteristic
normals takes the form .

det (pQ — A) = 0, A =] Ay

where A;j are found according to the equation
1 1 1,1 , 1. 1. 1,
Ny = (0po+ 5 Pop + 5 B) 585 — 3+ 5 Pi) ol + 7 o0Bb — 7 00hiE - HEESy + 7 onEiEds

Here Q=w+u; and (w, £, &9, £3) is the normal vector to the characteristic surface.

The matrix A is asymmetric, and hence we cannot immediately conclude that its eigenvalues are real.
However, they can be written out in terms of explicit equations. Consider the sum £ iAij (in matrix terms
this means that to the first column of A, multiplied by £4, are added the second and third columns, multi-
plied, respectively, by £, and £,)

&iAs; = Eillppe + p7'pEp + Y/3WErEr — P PEOLERE]
The elements of the first column in the characteristic determinant after such a transformation turn
out to be proportional, and hence the characteristic equation splits into two equations:

pQ? = (pp, + 07 pgp + Y/a 1) Exkr — 07 P08
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& —Ase ' —Ays
& 992 — Azz —Ags =0
& —Agy  pRE— g

The first equation is an explicit equation for one root, corresponding to the propagation velocity of
longitudinal waves. The second equation, quadratic with respect to pﬂz, has roots corresponding to the two
propagation velocities of transverse waves.

Let us calculate the roots of the quadratic equation. We go over to the principal axes of the stress

tensor g;;'=0;", “ij' =0 (i=j). The following A;j are necessary:

1 1 [ 1 1 A 1 ’
Ay = (PPP + < Pep+ 3 M) g& — (T + TPE) S22’ 8182 + 5 011Tabe

1 1 1 1 ' 1 ’
Ayy = (PPp + = Pep + = M) &8 — (—2— + 'p—pE) 633 Exks + - on'tils

1 1
Agp = <9PP + 4 pep+ 5 H) B2 p 48 B — %pEGgg’Egz_i_ .17511'512 + '12" G9o'Eo” + % Gag'Es? — % Gag” (B1® + Ea% + &)
1 1 1,1\, ,
Agg = (ppa + ry DPED + 5 u) Eofy — <—2" -+ “p-PE) Ga5'Eaks :{‘ % Gaa'Eols
i

1 1 & 1 ” E
Ag = <ppp + 'p-PEP + 3 P) LG — (T -+ TPE) oo Eats -+ ";“ 6338582

1 1 R ’ .
Ags = (ppp + TPEP + 3 IL) B2 pEl+E+EY —%PE533'§32+ ‘%‘“ 011'8:% 4 ‘%—Gazlgez +—;‘ Gy3 By — % 633’ (§;® + B2 4 E%)
Expanding the determinant, we obtain a quadratic equation:
[pPQ? — p (€ 4 &2 + &I — 3/ (618 + 60'Es® - 03'5s%) [pQ® —
—pEEFEE 4]+ Ye (6 — ) (6 — ) Bt + Yalo —
— &) (6" = 6") & 4 s (0" — 65) (6" — &) &F — Yy (0 —
— ) &% — .1/4 (05" — 61')2 81 %Es® — /4 (08" — 32')? 5% = 0

The roots of this equation are

Py = W2 + B + &%) -+ 3y (o152 + 62’5 + 05?1
E e (018 + 62" B + 05'Es?) — 4 (B + Bo® + E®) (00'05'&a® + 05’01 'Ee® + o1/0n'EY) e

They correspond to the propagation velocities of transverse waves. The root, corresponding to the propa-
gation velocity of longitudinal waves, in the principal axes has the form

09,* = (pp, -+ p~'pep + Yu)E? + & + BB — 07 pe (082 + 0,8 + 05857

If we set g;'=2udj, then the calculated roots with the specified accuracy coincide with the approximations

to the eigenvalues calculated for model (1). This serves as a confirmation of the fact that the model (2) con-
sidered here is an approximation of model (1) with the equation of state E=E{®) (p, s)+2m(p, S)D. The de-
fect of model (2) lies in the lack of any integral, i.e., the conservation of entropy in adiabatic processes.

The author is grateful to S. K. Godunov for discussions.
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